Aplikasi Teknik Poro-Acoustic Impedance untuk Meningkatkan Korelasi Pengikatan Data Sumur dan Penampang Seismik
Penulis
Handoyo Handoyo , Brian Samuel , Sondang SamosirDOI:
10.29303/goescienceed.v6i1.519Diterbitkan:
2025-01-07Versi:
- 2025-01-07 (2)
- 2025-01-07 (1)
Terbitan:
Vol 6 No 1 (2025): In PressArticles
Abstrak
Pada tahap interpretasi seismik refleksi, pengikatan data sumur dengan data seismik (well seismic tie) merupakan tahapan krusial untuk memastikan lokasi target eksplorasi sudah tepat. Secara konvensional, proses ini melibatkan parameter-parameter fisis seperti densitas, kecepatan gelombang -P, impedansi akustik atau Acoustic Impedance (AI), dan koefisien refleksi. Hasil dari konvolusi koefisien refleksi dengan suatu wavelet, menghasilkan seismogram sintetik yang digunakan untuk mengikat data seismik. Pada penelitian ini, kami menerapkan teknologi baru dalam tahapan interpretasi seismic refleksi yang disebut Poro-Acoustic Impedance (PAI). Metode PAI menggunakan konsep porositas yang seharusnya terlibat dalam perumusan nilai Acoustic Impedance sehingga dapat merepresentasikan kondisi batuan secara aktual. Pada penelitian ini, kami menggunakan data seismik 2D dari lapangan migas di Laut Utara disertai dengan satu data sumur (well) yang digunakan sebagai marker dan analisis PAI. Hasil penelitian ini menunjukkan bahwa terjadi peningkatan korelasi pengikatan data sumur dengan data seismik dari 0.789 ketika menggunakan metode AI menjadi 0.834 ketika menggunakan metode PAI. Peningkatan ini berimplikasi pada proses picking yang lebih efektif dan akurat. Dengan demikian, metode PAI dapat menjadi metode baru yang simpel dan efektif untuk mengurangi ketidakppastian pada proses pengikatan data sumur dengan data seismik, sehingga batas-batas formasi batuan dapat tercitrakan dengan lebih baik.Referensi
Aftab, S., Leisi, A., & Shad Manaman, N. (2024). Poro acoustic impedance as a new seismic inversion attribute for reservoir characterization. Journal of the Earth and Space Physics, 49(4).
Alblas, L. D. (2001). The petroleum industry in the Netherlands-its setting and possible future. Netherlands Journal of Geosciences, 80(1), 23-32.
Avseth, P., Jørstad, A., van Wijngaarden, A. J., & Mavko, G. (2009). Rock physics estimation of cement volume, sorting, and net-to-gross in North Sea sandstones. The Leading Edge, 28(1), 98-108.
Azevedo, L., Amaro, C., Grana, D., Soares, A., & Guerreiro, L. (2017, November). Coupling Geostatistics and Rock Physics in Reservoir Modeling and Characterization. In Abu Dhabi International Petroleum Exhibition and Conference (p. D011S002R006). SPE.
Bijlsma, S. (1981). Fluvial sedimentation from the Fennoscandian area into the North-West European Basin during the Late Cenozoic.
Dubey, S., & Mishra, S. (2013, March). Petroleum systems modelling: a case study from Dutch Central Graben (Offshore Netherlands). In Petroleum Geoscience Conference & Exhibition 2013 (pp. cp-340). European Association of Geoscientists & Engineers.
Farfour, M., Yoon, W. J., & Kim, J. (2015). Seismic attributes and AI inversion in interpretation of complex hydrocarbon reservoirs. Journal of Applied Geophysics, 114, 68–80. https://doi.org/10.1016/j.jappgeo.2015.01.008.
Ghazi, S. A. (1990). Cenozoic uplift 1n the Stord Basin area and its consequences for exploration. Post-Cretaceous Uplift and Sedimentation Along the Western Fennoscandian Shield, 3, 285.
Handoyo, H., Ronlei, B. C., Sigalingging, A. S., Avseth, P., Triyana, E., Akin, Ö., ... & Carbonell, R. (2024). Characterization of Carbonate Reservoir Potential in Salawati Basin, West Papua: Analysis of Seismic Direct Hydrocarbon Indicator (DHI), Seismic Attributes, and Seismic Spectrum Decomposition. Indonesian Journal on Geoscience, 11(2), 173-188.
Herrera, R. H., & van der Baan, M. (2014). A semiautomatic method to tie Well logs to seismic data. Geophysics, 79(3), V47-V54.
Jordt, H., Faleide, J. I., Bjørlykke, K., & Ibrahim, M. T. (1995). Cenozoic sequence stratigraphy of the central and northern North Sea Basin: tectonic development, sediment distribution and provenance areas. Marine and Petroleum Geology, 12(8), 845-879.
Kadkhodaie-Ilkhchi, R., Moussavi-Harami, R., Rezaee, R., Nabi-Bidhendi, M., & Kadkhodaie-Ilkhchi, A. (2014). Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range field in the Perth Basin, Western Australia. Journal of Natural Gas Science and Engineering, 21, 1073-1083.
Kushwaha, P. K., Maurya, S. P., Singh, N. P., & Rai, P. (2020). Use of maximum likelihood sparse spike inversion and probabilistic neural network for reservoir characterization: a study from F-3 block, the Netherlands. Journal of Petroleum Exploration and Production Technology, 10, 829-845.
Leisi, A., Aftab, S., & Manaman, N. S. (2024). Poro-acoustic impedance (PAI) as a new and robust seismic inversion attribute for porosity prediction and reservoir characterization. Journal of Applied Geophysics, 223, 105351.
Lidmar-Bergström, K., Ollier, C. D., & Sulebak, J. R. (2000). Landforms and uplift history of southern Norway. Global and Planetary Change, 24(3-4), 211-231.
Margrave, G. F. (2013). Why seismic-to-Well ties are difficult. the 25th Annual Report of the CREWES Project.
Novia, N., Handoyo, H., Fatkhan, F., Laesanpura, A., & Putri, H. Y. (2021). Analisis Hubungan antara Nilai Critical Porosity dan Pore Space Stiffness Terhadap Kualitas Reservoir Batupasir Lapangan” N” Cekungan Sumatera Selatan. Jurnal Geofisika, 19(2), 51-56.
Overeem, I., Weltje, G. J., Bishop‐Kay, C., & Kroonenberg, S. B. (2001). The Late Cenozoic Eridanos delta system in the Southern North Sea Basin: a climate signal in sediment supply?. Basin Research, 13(3), 293-312.
Qayyum, F., Akhter, G., & Ahmad, Z. (2008). Logical expressions a basic tool in reservoir characterization. Oil and Gas Journal, 106(41), 33.
Remmelts, G. (1995). Fault-related salt tectonics in the southern North Sea, the Netherlands.
Rijs, F. (1992). Dating and measuring of erosion, uplift and subsidence in Norway and the Norwegian shelf in glacial periods. Norsk Geologisk Tidsskrift, 72, 325-331.
Rohrman, M., van der Beek, P., Andriessen, P., & Cloetingh, S. (1995). Meso‐Cenozoic morphotectonic evolution of southern Norway: Neogene domal uplift inferred from apatite fission track thermochronology. Tectonics, 14(3), 704-718.
Rondeel, H., Batjes, D., Nieuwenhuijs, W. (1996). Geology of gas and oil under the Netherlands; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands.
Sales, J. K. (1992). Uplift and subsidence of northwestern Europe: possible causes and influence on hydrocarbon productivity. Norsk geologisk tidsskrift, 72(3), 253-258.
Simm, R., & Bacon, M. (2014). Seismic amplitude: An interpreter's handbook. Cambridge university press.
Steeghs, P., Overeem, I., & Tigrek, S. (2000). Seismic volume attribute analysis of the Cenozoic succession in the L08 block (Southern North Sea). Global and Planetary Change, 27(1-4), 245-262.
Van Adrichem Boogaert, H. A., & Kouwe, W. P. F. (1993). Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA.
Vinken, R. (Ed.). (1988). The Northwest European Tertiary Basin: results of the International Geological Correlation Programme.
White, R. E., & Simm, R. (2003). Tutorial: Good practice in Well ties. First break, 21(10).
Zanetta, E. V., Handoyo, H., Fatkhan, F., Laesanpura, A., & Hutami, H. Y. (2021). Analisis Parameter Elastisitas Untuk Interpretasi Litologi Dan Fluida Pori Reservoir Batupasir Formasi Intra Gumai Cekungan Sumatera Selatan. Jurnal Geofisika, 19(2), 45-50.