Identifikasi Konsentrasi Emisi Fine Particle di Ruangan Tertutup dengan Sistem Pendingin Udara Otomatis
Penulis
Arif Budianto , Kasnawi Al Hadi , Nanda Medina Apriza , Roviq WijayaDOI:
10.29303/goescienceed.v5i4.509Diterbitkan:
2024-10-29Terbitan:
Vol 5 No 4 (2024): NovemberAbstrak
Particulate matter adalah emisi udara yang terdiri dari kumpulan partikel padat dan cair dan tersuspensi di udara. Emisi ini berukuran sangat kecil (berorde submikron) dan mengambang bebas di udara. Fine particle adalah salah satu jenis particulate matter yang umum digunakan sebagai komponen penentu kualitas udara di dalam ruangan. Di sisi lain, sistem pengukuran konsentrasi emisi ini relatif mahal dan kurang ekonomis. Sejalan dengan hal tersebut, penelitian ini bertujuan untuk menidentifikasi konsentrasi fine particle dalam ruang berpendingin udara. Pengukuran dilakukan menggunakan sebuah sensor debu digital dan papan mikrokontroler di dalam ruang pengujian selama satu jam. Pengukuran tersebut dilakukan dengan dua variasi kondisi, yakni aktif (banyak orang di dalamnya) dan non aktif (ruang kosong). Hasil pengukuran menunjukkan bahwa aktivitas dan pergerakan manusia dalam kondisi pengujian aktif memiliki konsentrasi fine particle yang lebih tinggi dibandingkan kondisi non aktif. Perbedaan konsentrasi di antara kedua kondisi ini sebesar 12 µg/m3. Hasil ini menyimpulkan bahwa aktivitas manusia termasuk sebagai faktor yang dapat mempengaruhi distribusi partikulat berorde submikron di dalam ruangan. Ruangan berpendingin udara berpotensi memiliki lebih banyak konsentrasi fine particle dibandingkan dengan ruang tanpa pendingin udara.Referensi
Budianto, A., Wardoyo, A. Y. P., Masruroh, Dharmawan, H. A., & Nurhuda, M. (2021). Performance test of an aerosol concentration measurement system based on quartz crystal microbalance. IOP Conference Series: Earth and Environmental Science, 1811(1). https://doi.org/10.1088/1742-6596/1811/1/012033
Butwin, M. K., von Löwis, S., Pfeffer, M. A., & Thorsteinsson, T. (2019). The effects of volcanic eruptions on the frequency of particulate matter suspension events in Iceland. Journal of Aerosol Science, 128(November 2018), 99–113. https://doi.org/10.1016/j.jaerosci.2018.12.004
Dimitriou, K., Bougiatioti, A., Ramonet, M., Pierros, F., Michalopoulos, P., Liakakou, E., Solomos, S., Quehe, P. Y., Delmotte, M., Gerasopoulos, E., Kanakidou, M., & Mihalopoulos, N. (2021). Greenhouse gases (CO2 and CH4) at an urban background site in Athens, Greece: Levels, sources and impact of atmospheric circulation. Atmospheric Environment, 253(March), 118372. https://doi.org/10.1016/j.atmosenv.2021.118372
Fujitani, Y., Takahashi, K., Fushimi, A., Hasegawa, S., Kondo, Y., Tanabe, K., & Kobayashi, S. (2020). Particle number emission factors from diesel trucks at a traffic intersection: Long-term trend and relation to particle mass-based emission regulation. Atmospheric Environment: X, 5, 100055. https://doi.org/10.1016/j.aeaoa.2019.100055
Hachem, M., Loizeau, M., Saleh, N., Momas, I., & Bensefa-Colas, L. (2021). Short-term association of in-vehicle ultrafine particles and black carbon concentrations with respiratory health in Parisian taxi drivers. Environment International, 147, 106346. https://doi.org/10.1016/j.envint.2020.106346
Hadi, K. Al, Wardoyo, A. Y. P., Juswono, U. P., Naba, A., Budianto, A., & Adi, E. T. P. (2022). A Study of Erythrocyte Deformation Level Related to Biomass Burning Emission Exposures Using Artificial Neural Networks. Polish Journal of Environmental Studies, 31(6), 5037–5046. https://doi.org/10.15244/pjoes/150643
Hadi, K. A., Wardoyo, A. Y. P., Naba, A., Juswono, U. P., & Budianto, A. (2021). Investigation of burning rate on particulate matter emission factor of rice straw burning (case study in Lombok Island, Indonesia). Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1811/1/012051
He, Y., Lan, X., & Zhu, L. (2023). Effect of urban green infrastructure on pedestrian exposure to ultrafine particles: A case study of Guangzhou, China. Urban Climate, 49(August 2022), 101453. https://doi.org/10.1016/j.uclim.2023.101453
Jameson, G. J., Cooper, L., Tang, K. K., & Emer, C. (2020). Flotation of coarse coal particles in a fluidized bed: The effect of clusters. Minerals Engineering, 146(October 2019), 106099. https://doi.org/10.1016/j.mineng.2019.106099
Khoa, N. D., Li, S., Phuong, N. L., Kuga, K., Yabuuchi, H., Kan-O, K., Matsumoto, K., & Ito, K. (2023). Computational fluid-particle dynamics modeling of ultrafine to coarse particles deposition in the human respiratory system , down to the terminal bronchiole. Computer Methods and Programs in Biomedicine, 237, 107589. https://doi.org/10.1016/j.cmpb.2023.107589
Madhwal, S., Prabhu, V., Sundriyal, S., & Shridhar, V. (2020). Ambient bioaerosol distribution and associated health risks at a high traffic density junction at Dehradun city, India. Environmental Monitoring and Assessment, 192(3). https://doi.org/10.1007/s10661-020-8158-9
Mahasakpan, N., Chaisongkaew, P., Inerb, M., Nim, N., Phairuang, W., Tekasakul, S., Furuuchi, M., Hata, M., Kaosol, T., Tekasakul, P., & Dejchanchaiwong, R. (2023). Fine and ultrafine particle- and gas-polycyclic aromatic hydrocarbons affecting southern Thailand air quality during transboundary haze and potential health effects. Journal of Environmental Sciences, 124, 253–267. https://doi.org/10.1016/j.jes.2021.11.005
Marco, C. De, Ruprecht, A. A., Pozzi, P., Munarini, E., Ogliari, A. C., Mazza, R., & Boffi, R. (2016). Particulate matters from diesel heavy duty trucks exhaust versus cigarettes emissions : a new educational antismoking instrument. Multidisciplinary Respiratory Medicine, 1–5. https://doi.org/10.1186/s40248-016-0042-7
Minguillón, M. C., Rivas, I., Moreno, T., Alastuey, A., Font, O., Córdoba, P., Álvarez-Pedrerol, M., Sunyer, J., & Querol, X. (2015). Road traffic and sandy playground influence on ambient pollutants in schools. Atmospheric Environment, 111, 94–102. https://doi.org/10.1016/j.atmosenv.2015.04.011
Mӧller, W., Felten, K., Sommerer, K., Scheuch, G., Meyer, G., Meyer, P., Hӓussinger, K., & Kreyling, W. G. (2008). Deposition, Retention, and Translocation of Ultrafine Particles from the Central Airways and Lung Periphery. American Journal of Respiratory and Critical Care Medicine, 177, 426–432. https://doi.org/10.1164/rccm.200602-301OC
Oetari, P. S., Hadi, S. P., & Huboyo, H. S. (2019). Trace elements in fine and coarse particles emitted from coal-fired power plants with different air pollution control systems. Journal of Environmental Management, 250(August), 109497. https://doi.org/10.1016/j.jenvman.2019.109497
Qi, M., Zhu, X., Du, W., Chen, Y., Chen, Y., Huang, T., Pan, X., Zhong, Q., Sun, X., Zeng, E. Y., Xing, B., & Tao, S. (2017). Exposure and health impact evaluation based on simultaneous measurement of indoor and ambient PM2.5 in Haidian, Beijing. Environmental Pollution, 220, 704–712. https://doi.org/10.1016/j.envpol.2016.10.035
Ravindra, K., Singh, T., Singh, V., Chintalapati, S., Beig, G., & Mor, S. (2023). Understanding the influence of summer biomass burning on air quality in North India: Eight cities field campaign study. Science of the Total Environment, 861(December 2022), 160361. https://doi.org/10.1016/j.scitotenv.2022.160361
Sagastume Gutiérrez, A., Mendoza Fandiño, J. M., Cabello Eras, J. J., & Sofan German, S. J. (2022). Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia). Development Engineering, 7(October 2021). https://doi.org/10.1016/j.deveng.2022.100093
Shi, Y., & Li, X. (2018). Purifier or fresh air unit? A study on indoor particulate matter purification strategies for buildings with split air-conditioners. Building and Environment, 131(December 2017), 1–11. https://doi.org/10.1016/j.buildenv.2017.12.033
Sigsgaard, T., Forsberg, B., Annesi-Maesano, I., Blomberg, A., Bølling, A., Boman, C., Bønløkke, J., Brauer, M., Bruce, N., Héroux, M. E., Hirvonen, M. R., Kelly, F., Künzli, N., Lundbäck, B., Moshammer, H., Noonan, C., Pagels, J., Sallsten, G., Sculier, J. P., & Brunekreef, B. (2015). Health impacts of anthropogenic biomass burning in the developed world. European Respiratory Journal, 46(6), 1577–1588. https://doi.org/10.1183/13993003.01865-2014
Sioutas, C., Delfino, R. J., & Singh, M. (2005). Exposure Assessment for Atmospheric Ultrafine Particles (UFPs) and Implications in Epidemiologic Research. Environmental Health Perspectives, 113(8), 947–956. https://doi.org/10.1289/ehp.7939
Siregar, U. A., Valzon, M., Fitrianti, & Budianto, A. (2023). Effect of peat biomass smoke exposure on oxidative stress in Wistar rats. Jurnal Kedokteran Dan Kesehatan Indonesia, 14(2), 121–127. https://doi.org/10.20885/JKKI.Vol14.Iss2.art2
Suriyawong, P., Chuetor, S., Samae, H., Piriyakarnsakul, S., Amin, M., Furuuchi, M., Hata, M., Inerb, M., & Phairuang, W. (2023). Airborne particulate matter from biomass burning in Thailand: Recent issues, challenges, and options. Heliyon, 9(3), e14261. https://doi.org/10.1016/j.heliyon.2023.e14261
Wang, Y., Wang, Y., Liu, W., Chen, D., Wu, C., & Xie, J. (2019). An aerosol sensor for PM1 concentration detection based on 3D printed virtual impactor and SAW sensor. Sensors and Actuators, A: Physical, 288, 67–74. https://doi.org/10.1016/j.sna.2019.01.013
Wardoyo, A., & Budianto, A. (2017). A DC Low Electrostatic Filtering System For PM2.5 Motorcycle Emission. IEEE Xplore, 1, 51–54.
Zhang, J. J., Wei, Y., & Fang, Z. (2019). Ozone pollution: A major health hazard worldwide. Frontiers in Immunology, 10(October), 1–10. https://doi.org/10.3389/fimmu.2019.02518