A Kontribusi Geofisika dalam Eksplorasi Hidrogen Geologis (Geologic Hydrogen) di Bawah Permukaan
Penulis
Handoyo HandoyoDiterbitkan:
2024-11-06Versi:
- 2024-11-06 (2)
- 2024-11-06 (1)
Terbitan:
Vol 6 No 1 (2025): In PressArticles
Abstrak
Transisi energi ke sumber energi yang lebih ramah lingkungan sangat penting untuk mengurangi emisi karbon di atmosfer bumi. Di antara jenis energi baru yang ramah lingkungan, terdapat peningkatan kesadaran akan potensi hidrogen (H2) geologis yang terbentuk secara alami sebagai sumber energi primer yang dapat dimasukkan ke dalam pasokan energi pada masa depan. Geofisika diperkirakan akan memainkan peran penting dalam upaya tersebut. Ada dua jenis H2 geologis yang berbeda yaitu H2 alami (gold H2) yang secara konsep terakumulasi secara alami di reservoir dalam kondisi geologi tertentu. Selanjutnya adalah H2 terstimulasi (orange H2) yang diproduksi secara artifisial dari batuan sumber melalui stimulasi kimia dan fisika. Pada paper ini, kami akan membahas peranan geofisika dalam eksplorasi H2 geologis sebagai perbandingan yang kontras dengan skenario H2 biru dan hijau (blue and green H2). Kemudian, akan dibahas pentingnya metode geofisika pada eksplorasi H2 alami dan H2 terstimulasi baik dalam hal teknik eksplorasi dan pemantauan (monitoring). Dengan memberdayakan berbagai instrumen dan metode-metode geofisika terintegrasi dalam eksplorasi dan produksi hidrokarbon yang sudah ada, diharapkan dapat diperoleh gambaran mengenai peranan geofisika dalam eksplorasi H2 secara efektif. Secara umum, strategi eksplorasi H2 akan melibatkan peralihan sudut pandang dari pendekatan yang berpusat pada reservoir ke pendekatan yang berpusat pada batuan sumber. Terakhir, kami yakin bahwa metode geofisika yang melibatkan integrasi multi-geofisika, akuisisi data yang efisien, dan pembelajaran mesin dalam H2 geologis berpotensi memberikan pemahaman baru dan peluang signifikan untuk melanjutkan penelitian dalam beberapa mendatang.Referensi
Allen, D. E., & Seyfried Jr, W. E. (2004). Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochimica et Cosmochimica Acta, 68(6), 1347-1354.
Arrouvel, C., & Prinzhofer, A. (2021). Genesis of natural hydrogen: new insights from thermodynamic simulations. International Journal of Hydrogen Energy, 46(36), 18780-18794.
Baysal, E., Kosloff, D. D., & Sherwood, J. W. (1983). Reverse time migration. Geophysics, 48(11), 1514-1524.
Bouquet, A., Glein, C. R., Wyrick, D., & Waite, J. H. (2017). Alternative energy: production of H2 by radiolysis of water in the rocky cores of icy bodies. The Astrophysical Journal Letters, 840(1), L8.
Boreham, C. J., Edwards, D. S., Czado, K., Rollet, N., Wang, L., van der Wielen, S., ... & Henson, P. A. (2021). Hydrogen in Australian natural gas: occurrences, sources and resources. The APPEA Journal, 61(1), 163-191.
Brown, L., Mosher, C. C., Li, C., Olson, R., Doherty, J., Carey, T. C., ... & Staples, E. (2017). Application of compressive seismic
Chang, W. F., & McMechan, G. A. (1994). 3-D elastic prestack, reverse-time depth migration. Geophysics, 59(4), 597-609.
Coveney Jr, R. M., Goebel, E. D., Zeller, E. J., Dreschhoff, G. A., & Angino, E. E. (1987). Serpentinization and the origin of hydrogen gas in Kansas. AAPG Bulletin, 71(1), 39-48.
Cutts, J. A., Steinthorsdottir, K., Turvey, C., Dipple, G. M., Enkin, R. J., & Peacock, S. M. (2021). Deducing mineralogy of serpentinized and carbonated ultramafic rocks using physical properties with implications for carbon sequestration and subduction zone dynamics. Geochemistry, Geophysics, Geosystems, 22(9), e2021GC009989.
Dentith, M., & Mudge, S. T. (2014). Geophysics for the mineral exploration geoscientist. Cambridge University Press.
Devriese, S. G., Davis, K., & Oldenburg, D. W. (2017). Inversion of airborne geophysics over the DO-27/DO-18 kimberlites—Part 1: Potential fields. Interpretation, 5(3), T299-T311.DOE. Department of Energy. Hydrogen Shot, 2021. https://www.energy.gov/eere/fuelcells/hydrogen-shot (terakhir diakses pada 16 April 2024)
Dopffel, N., An-Stepec, B. A., de Rezende, J. R., Sousa, D. Z., & Koerdt, A. (2023). Microbiology of underground hydrogen storage. Frontiers in energy research, 11, 1242619.
Dou, Y., Wang, D., Zhang, M., & Zhang, M. (2017). Lithology prediction and pore fluid detection of tight sandstone reservoir. Journal of Mines, Metals & Fuels, 65(3).
Ellis, S. G., & Gelman, S. E. (2022). A preliminary model of global subsurface natural hydrogen resource potential. In Geological Society of America Abstracts with Programs (Vol. 54, No. 5, p. 2022).
Etiope, G., Schoell, M., & Hosgörmez, H. (2011). Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth and Planetary Science Letters, 310(1-2), 96-104.
Guélard, J., Beaumont, V., Rouchon, V., Guyot, F., Pillot, D., Jézéquel, D., ... & Deville, E. (2017). Natural H2 in K ansas: Deep or shallow origin?. Geochemistry, Geophysics, Geosystems, 18(5), 1841-1865.
Hand E . Hidden hydrogen. Science 2023; 375 : Issue 6633, 630–6363. https://www.science.org/content/article/hidden-hydrogen-earthmay-hold-vast-stores-renewable-carbon-free-fuel. (diakses terakhir pada 11 Juni 2024)Handoyo, H., Sudarsana, M. R., & Almiati, R. (2016). Rock Physics Modeling and Seismic Interpretation to Estimate Shally
Cemented Zone in Carbonate Reservoir Rock. Journal of Geoscience, Engineering, Environment, and Technology, 1(1), 45-50.
Handoyo, H., Ronlei, B. C., Sigalingging, A. S., Avseth, P., Triyana, E., Akin, Ö., ... & Carbonell, R. (2024). Characterization of Carbonate Reservoir Potential in Salawati Basin, West Papua: Analysis of Seismic Direct Hydrocarbon Indicator (DHI), Seismic Attributes, and Seismic Spectrum Decomposition. Indonesian Journal on Geoscience, 11(2), 173-188.
He, L., Chen, L., Dorji, He, Z., Wang, X., Xiao, B., ... & Chen, R. (2018). Mapping chromite deposits with audio magnetotellurics in the Luobusa ophiolite of southern Tibet. Geophysics, 83(2), B47-B57.
Herrmann, F. J. (2010). Randomized sampling and sparsity: Getting more information from fewer samples. Geophysics, 75(6), WB173-WB187.
Holm, N. G., Oze, C., Mousis, O., Waite, J. H., & Guilbert-Lepoutre, A. (2015). Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology, 15(7), 587-600.
Holtham, E., & Oldenburg, D. W. (2010). Three-dimensional inversion of ZTEM data. Geophysical Journal International, 182(1), 168-182.
IEA, Global Hydrogen Review 2021. International Energy Agency, 2021; 218 p. Paris. https://www.iea.org/reports/global-hydrogen-review-2021 (terakhir diakses pada 23 April 2024).
IEA. The future of hydrogen: seizing today’s opportunities. International Energy Agency 2019; 203 p. Paris. https://www.iea.org/reports/thefuture-of-hydrogen (terakhir diakses pada 23 April 2024).
Klein, F., Bach, W., & McCollom, T. M. (2013). Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos, 178, 55-69.
Klein, F., Tarnas, J. D., & Bach, W. (2020). Abiotic sources of molecular hydrogen on Earth. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 16(1), 19-24.
Lefeuvre, N., Truche, L., Donzé, F. V., Gal, F., Tremosa, J., Fakoury, R. A., ... & Gaucher, E. C. (2022). Natural hydrogen migration along thrust faults in foothill basins: The North Pyrenean Frontal Thrust case study. Applied Geochemistry, 145, 105396.
Leong, J. A., Nielsen, M., McQueen, N., Karolytė, R., Hillegonds, D. J., Ballentine, C., ... & Kelemen, P. (2023). H2 and CH4 outgassing rates in the Samail ophiolite, Oman: implications for low-temperature, continental serpentinization rates. Geochimica et Cosmochimica Acta, 347, 1-15.
Li, Y., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61(2), 394-408.
Li, Y., & Oldenburg, D. W. (1998). 3-D inversion of gravity data. Geophysics, 63(1), 109-119.
Li, C., Mosher, C. C., Shan, S., & Brewer, J. D. (2013). Marine towed streamer data reconstruction based on compressive sensing. In SEG Technical Program Expanded Abstracts 2013 (pp. 3597-3602). Society of Exploration Geophysicists.
Lollar, B. S., Onstott, T. C., Lacrampe-Couloume, G., & Ballentine, C. J. (2014). The contribution of the Precambrian continental lithosphere to global H2 production. Nature, 516(7531), 379-382.
Marfurt, K. J., Kirlin, R. L., Farmer, S. L., & Bahorich, M. S. (1998). 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics, 63(4), 1150-1165.
McCollom, T. M., & Bach, W. (2009). Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta, 73(3), 856-875.
McCollom, T. M., & Seewald, J. S. (2013). Serpentinites, hydrogen, and life. Elements, 9(2), 129-134.
McCollom, T. M., Klein, F., Robbins, M., Moskowitz, B., Berquó, T. S., Jöns, N., ... & Templeton, A. (2016). Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochimica et Cosmochimica Acta, 181, 175-200.
McCollom, T. M., Klein, F., & Ramba, M. (2022). Hydrogen generation from serpentinization of iron-rich olivine on Mars, icy moons, and other planetary bodies. Icarus, 372, 114754.
Melo, A., & Li, Y. (2021). Geology differentiation by applying unsupervised machine learning to multiple independent geophysical inversions. Geophysical Journal International, 227(3), 2058-2078.
Milkov, A. V. (2022). Molecular hydrogen in surface and subsurface natural gases: Abundance, origins and ideas for deliberate exploration. Earth-Science Reviews, 230, 104063.
Mosher, C. C., Li, C., Morley, L. C., Janiszewski, F. D., Ji, Y., & Brewer, J. (2014, October). Non-uniform optimal sampling for simultaneous source survey design. In SEG International Exposition and Annual Meeting (pp. SEG-2014). SEG.
Nabighian, M. N., & Asten, M. W. (2002). Metalliferous mining geophysics—State of the art in the last decade of the 20th century and the beginning of the new millennium. Geophysics, 67(3), 964-978.
Neal, C., & Stanger, G. (1983). Hydrogen generation from mantle source rocks in Oman. Earth and Planetary Science Letters, 66, 315-320.
Oldenburg, D., Eso, R., Napier, S., & Haber, E. (2005). Controlled source electromagnetic inversion for resource exploration. first break, 23(7).
Osselin, F., Soulaine, C., Fauguerolles, C., Gaucher, E. C., Scaillet, B., & Pichavant, M. (2022). Orange hydrogen is the new green. Nature Geoscience, 15(10), 765-769.
Prinzhofer, A., Moretti, I., Françolin, J., Pacheco, C., d'Agostino, A., Werly, J., & Rupin, F. (2019). Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure. International Journal of Hydrogen Energy, 44(12), 5676-5685.
Renaud, C. (2014). Nature and evolution of Neoproterozoic ocean-continent transition: Evidence from the passive margin of the West African craton in NE Mali. Journal of African Earth Sciences, 91, 1-11.
Virieux, J., & Operto, S. (2009). An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6), WCC1-WCC26.
Wu, Y., & McMechan, G. A. (2019). Parametric convolutional neural network-domain full-waveform inversion. Geophysics, 84(6), R881-R896.
Yedinak, E. M. (2022). The curious case of geologic hydrogen: Assessing its potential as a near-term clean energy source. Joule, 6(3), 503-508.
Zanetta, E. V., Handoyo, H., Fatkhan, F., Laesanpura, A., & Hutami, H. Y. (2021). Analisis Parameter Elastisitas Untuk Interpretasi Litologi Dan Fluida Pori Reservoir Batupasir Formasi Intra Gumai Cekungan Sumatera Selatan. Jurnal Geofisika, 19(2), 45-50.
Zgonnik, V. (2020). The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203, 103140.
Zhang, M., Du, G., Man, W., Wang, D. X., & Zhao, Y. H. (2016, October). Seismic sedimentary analysis of the tight reservoir based on TT transform. In SEG International Exposition and Annual Meeting (pp. SEG-2016). SEG.
Zhang, M. (2022). Compressive sensing acquisition with application to Marchenko imaging. Pure and Applied Geophysics, 179(6), 2383-2404.
Zhang, M., & Li, Y. (2023, December). Geologic H2 resource exploration using geophysics. In AGU Fall Meeting Abstracts (Vol. 2023, pp. NS11A-07).
Zhang, M., & Li, Y. (2024). Ergodic sampling: Acquisition design to maximize information from limited samples. Geophysical Prospecting, 72(2), 435-467.
Zhang, M., & Li, Y. (2024). The role of geophysics in geologic hydrogen resources. Journal of Geophysics and Engineering, gxae056.