Kajian Morfologi Mineral Magnetik Tanah Permukaan Dari Daerah Industri Di Banjarmasin
Penulis
Sudarningsih Sudarningsih , Ibrahim Ibrahim , Tetti Novalina ManikDOI:
10.29303/goescienceed.v6i1.434Diterbitkan:
2024-11-05Terbitan:
Vol 6 No 1 (2025): In PressAbstrak
Penelitian untuk mengidentifikasi morfologi mineral magnetik dari tanah kawasan industri daerah Banjarmasin telah dilakukan. Sampel tanah tersebut dianalisis dengan menggunakan Scanning Electron Microscopy-Energy Dispersive X Ray Spectroscopy (SEM EDS) untuk mengetahui morfologi mineral magnetiknya. Keberadaan mineral magnetik di alam dapat menunjukkan kehadiran logam berat. Bentuk mineral magnetik pada sampel daerah penelitian didominasi oleh bentuk bulat sempurna dan bulat tidak sempurna yang diduga merupakan hasil proses antropogenik. Ukuran dari bulir mineral magnetiknya adalah multidomain (≥ 11–118,8 μm) dan pseudo single domain (≤ 3,7–9,5 μm).Referensi
Ananthapadmanabha, A. L., Shankar, R., & Sandeep, K. (2014). Rock magnetic properties of lateritic soil profiles from southern India: Evidence for pedogenic processes. Journal of Applied Geophysics, 111, 203–210. https://doi.org/10.1016/j.jappgeo.2014.10.009
Ayoubi, S., & Adman, V. (2019). Iron Mineralogy and Magnetic Susceptibility of Soils Developed on Various Rocks in Western Iran. Clays and Clay Minerals, 67(3), 217–227. https://doi.org/10.1007/s42860-019-00020-5
Barrios, M. dos R., Marques Junior, J., Matias, S. S. R., Panosso, A. R., Siqueira, D. S., & Scala Junior, N. (2017). Suscetibilidade magnética como indicador de qualidade do solo em áreas sob cultivo de cana-de-açúcar. Revista Caatinga, 30(2), 287–295. https://doi.org/10.1590/1983-21252017v30n203rc
Bijaksana, S., & Huliselan, E. K. (2010). Magnetic properties and heavy metal content of sanitary leachate sludge in two landfill sites near Bandung, Indonesia. Environmental Earth Sciences, 60(2), 409–419. https://doi.org/10.1007/s12665-009-0184-4
Butler, R. F. (1992). Paleomagnetism: Magnetik Domains to Geologic Teranes. Boston: Blackwell Scientific Publications.
César de Mello, D., Demattê, J. A. M., Silvero, N. E. Q., Di Raimo, L. A. D. L., Poppiel, R. R., Mello, F. A. O., … Rizzo, R. (2020). Soil magnetic susceptibility and its relationship with naturally occurring processes and soil attributes in pedosphere, in a tropical environment. Geoderma, 372(March), 114364. https://doi.org/10.1016/j.geoderma.2020.114364
Chai, Y., Guo, J., Chai, S., Cai, J., Xue, L., & Zhang, Q. (2015). Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China. Chemosphere, 134, 67–75. https://doi.org/https://doi.org/10.1016/j.chemosphere.2015.04.008
Chris Perry and Kevin Taylor. (2006). Environmental Sedimentology (C. Perry & K. Taylor, Eds.). Oxford: Blackwell Publishing.
Evans, G., Howarth, R. J., & Nombela, M. A. (2003). Metals in the sediments of Ensenada de San Simón (inner Rı́a de Vigo), Galicia, NW Spain. Applied Geochemistry, 18(7), 973–996. https://doi.org/https://doi.org/10.1016/S0883-2927(02)00203-2
Fitriani, D., Utami, W., Kirana, K. H., Agustine, E., & Zulaikah, S. (2021). Magnetic Signatures on River Sediments and Agricultural Soils as Proxy Indicators of Anthropogenic-derived Pollution (Case Study: Cikijing River, Rancaekek, West Java). Jurnal Penelitian Pendidikan IPA, 7(3), 381–387. https://doi.org/10.29303/jppipa.v7i3.697
Frančišković-Bilinski, S., Bilinski, H., Scholger, R., Tomašić, N., & Maldini, K. (2014). Magnetic spherules in sediments of the karstic Dobra River (Croatia). Journal of Soils and Sediments, 14(3), 600–614. https://doi.org/10.1007/s11368-013-0808-x
Franke, C., von Dobeneck, T., Drury, M. R., Meeldijk, J. D., & Dekkers, M. J. (2007). Magnetic petrology of equatorial Atlantic sediments: Electron microscopy results and their implications for environmental magnetic interpretation. Paleoceanography, 22(4), 1–23. https://doi.org/10.1029/2007PA001442
Goddu, S. R., Appel, E., Jordanova, D., & Wehland, F. (2004). Magnetic properties of road dust from Visakhapatnam ( India )–– relationship to industrial pollution and road traffic. 29, 985–995. https://doi.org/10.1016/j.pce.2004.02.002
Gu, Y. G., Gao, Y. P., & Lin, Q. (2016). Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Applied Geochemistry, 67, 52–58. https://doi.org/10.1016/j.apgeochem.2016.02.004
Horng, C., Huh, C., Chen, K., & Huang, P. (2009). Air pollution history elucidated from anthropogenic spherules and their magnetic signatures in marine sediments offshore of Southwestern Taiwan. Journal of Marine Systems, 76(4), 468–478. https://doi.org/10.1016/j.jmarsys.2007.09.014
Jordanova, D., Hoffmann, V., & Fehr, K. T. (2004). Mineral magnetic characterization of anthropogenic magnetic phases in the Danube river sediments (Bulgarian part). Earth and Planetary Science Letters, 221(1–4), 71–89. https://doi.org/10.1016/S0012-821X(04)00074-3
Jordanova, N., Jordanova, D., Liu, Q., Hu, P., Petrov, P., & Petrovský, E. (2013). Soil formation and mineralogy of a Rhodic Luvisol — insights from magnetic and geochemical studies. Global and Planetary Change, 110, 397–413. https://doi.org/10.1016/j.gloplacha.2013.08.020
Kirana, K. H., Ghazali, M., Septiana, L. A. E. S., Fitriani, D., Agustine, E., Fajar, S. J., & Nugraha, M. G. (2020). Karakterisasi Mineral Magnetik Sedimen Sungai Citarum Hilir Melalui Analisa Sifat Magnetik, Mineralogi serta Morfologi Magnetik. Positron, 10(2), 52. https://doi.org/10.26418/positron.v10i2.42143
Kristian, E., Bijaksana, S., Srigutomo, W., & Kardena, E. (2010). Scanning electron microscopy and magnetic characterization of iron oxides in solid waste landfill leachate. Journal of Hazardous Materials, 179(1–3), 701–708. https://doi.org/10.1016/j.jhazmat.2010.03.058
Lee, S., Kim, S., Kim, H., Seo, Y., Ha, Y., Kim, H., … Yu, Y. (2020). Tracing of traffic-related pollution using magnetic properties of topsoils in Daejeon, Korea. Environmental Earth Sciences, 79, 485. https://doi.org/10.1007/s12665-020-09223-9
Lehndorff, E., Urbat, M., & Schwark, L. (2006). Accumulation histories of magnetic particles on pine needles as function of air quality. Atmospheric Environment, 40(36), 7082–7096. https://doi.org/https://doi.org/10.1016/j.atmosenv.2006.06.008
Li, W., Mu, G., Zhang, W., Lin, Y., Zhang, D., & Song, H. (2019). Formation of greigite (Fe 3 S 4 ) in the sediments of saline lake Lop Nur, northwest China, and its implications for paleo-environmental change during the last 8400 years. Journal of Asian Earth Sciences, 174(November 2018), 99–108. https://doi.org/10.1016/j.jseaes.2018.11.021
Madi. (2022). Scanning Electron Microscope (SEM) Energy Despersive X-Ray(EDX). Yogyakarta: Laboratorium Penelitian Dan Pengujian Terpadu Universitas Gajah Mada.
Magiera, T., Mendakiewicz, M., Szuszkiewicz, M., Jabłońska, M., & Chróst, L. (2016). Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland. Science of The Total Environment, 566–567, 536–551. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.05.126
Maity, R., Venkateshwarlu, M., Mondal, S., Kapawar, M. R., Gain, D., & Paul, P. (2021). Magnetic and microscopic characterization of anthropogenically produced magnetic particles: a proxy for environmental pollution. International Journal of Environmental Science and Technology, 18(7), 1793–1808. https://doi.org/10.1007/s13762-020-02902-x
Novala, G. C., Sudarningsih, Kirana, K. H., Fajar, S. J., Mariyanto, & Bijaksana, S. (2019). Testing the effectiveness of mechanical magnetic extraction in riverine and lacustrine sediments. Journal of Physics: Conference Series, 1204(1). https://doi.org/10.1088/1742-6596/1204/1/012085
Rachwał, M., Kardel, K., Magiera, T., & Bens, O. (2017). Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma, 295, 10–21. https://doi.org/10.1016/j.geoderma.2017.02.007
Sikumbang, N., & Heryanto, R. (1994). Peta Geologi Lembar Banjarmasin, Skala 1 : 250.000. Bandung: Pusat Penelitian dan Pengembangan Geologi.
Sudarningsih, S., Pratama, A., Bijaksana, S., Fahruddin, F., Zanuddin, A., Salim, A., … Mariyanto, M. (2023). Magnetic susceptibility and heavy metal contents in sediments of Riam Kiwa, Riam Kanan and Martapura rivers, Kalimantan Selatan province, Indonesia. Heliyon, Vol. 9, p. e16425. https://doi.org/10.1016/j.heliyon.2023.e16425
Thompson, R., & Oldfield, F. (1986). Environmental Magnetism. https://doi.org/10.22498/pages.11.2-3.34
Veneva, L., Hoffmann, V., & Jordanova, D. (2003). Magnetic Susceptibility Screening of Anthropogenic Impact on the Danube River Sediments in Northwestern Bulgaria - Preliminary Results. Studia Geophysica et Geodaetica, 47(2), 403–418. https://doi.org/10.1023/A:1023736111156
Wang, P., Xue, J., & Zhu, Z. (2021). Comparison of heavy metal bioaccessibility between street dust and beach sediment: Particle size effect and environmental magnetism response. Science of the Total Environment, 777, 146081. https://doi.org/10.1016/j.scitotenv.2021.146081
Yunginger, R., Bijaksana, S., Dahrin, D., Zulaikah, S., Hafidz, A., Kirana, K. H., … Fajar, S. J. (2018). Lithogenic and anthropogenic components in surface sediments from lake limboto as shown by magnetic mineral characteristics, trace metals, and REE geochemistry. Geosciences (Switzerland), 8(4). https://doi.org/10.3390/geosciences8040116