Pembuatan Profil Udara Hembusan Pernapasan Perokok dan Non Perokok Berbasis Sensor CCS-811 dan Volatile Organic Compound
Authors
Sabila Alhadawiah , Arif Budianto , Rahadi Wirawan , Ni Ketut AnggrianiDOI:
10.29303/goescienceed.v6i1.506Published:
2024-11-06 — Updated on 2024-11-06Versions:
- 2024-11-06 (2)
- 2024-11-06 (1)
Issue:
Vol. 6 No. 1 (2025): In PressAbstract
VOC merupakan sekelompok senyawa organik yang mudah menguap ke atmosfer dan mempunyai berbagai dampak terhadap kesehatan manusia dan lingkungan. VOC merupakan faktor penting dalam pembentukan ozon troposfer dan aerosol organik sekunder, yang menjadi komponen utama pembentukan polusi udara. VOC dapat terkandung di dalam udara sisa pernapasan manusia, dengan konsentrasi yang berbeda-beda dan sangat bergantung dengan kondisi metabolisme tubuh, kebiasaan, makanan yang dikonsumsi, dan lain sebagainya. Oleh sebab itu, penelitian ini bertujuan untuk mengidentifikasi konsentrasi TVOC dari udara hembusan nafas (exhaled breath) yang kemudian dijadikan sebagai profil udara yang dapat membedakan klasifikasi perokok atau non perokok. Penelitian ini menggunakan 50 sampel nafas yang dibagi ke dalam dua klasifikasi utama, yakni perokok dan non perokok. Udara bersih terfilter digunakan sebagai variabel kontrol. Sampel nafas diukur konsentrasi VOC menggunakan sebuah e-nose berbasis sensor CCS-811 yang sudah dikalibrasi dan diuji menggunakan komparator dan beberapa gas, seperti: gas karbon dioksida (CO2), hidrogen sulfida (H2S), etanol (C2H5OH), dan formaldehida (CH2O). Hasil penelitian menunjukkan bahwa sistem e-nose berbasis sensor CCS-811 dapat membaca gas VOC dengan rata-rata pembacaan yang dihasilkan sebesar 0-1156 ppb dengan tingkat kesalahan relatif <50%. Keseluruhan hasil pengujian ini menunjukkan bahwa sistem cukup sensitif terhadap gas CH2O dan C2H5OH, namun tidak sensitif terhadap gas CO2 dan H2S. Berdasarkan pada hasil penelitian, dapat disimpulkan bahwa sistem dapat secara sensitif dan selektif mendeteksi senyawa VOC pada jenis C2H5OH dan CH2O dengan nilai akurasi >50%. Hasil pembacaan sistem pada sampel nafas perokok dan non perokok dapat menghasilkan tiga zona konsentrasi TVOC yang selanjutnya menjadi profil has TVOC yang dihembuskan oleh kelompok sampel. Terdapat perbedaan yang cukup signifikan antara konsentrasi TVOC perokok dan non perokok. Sistem dapat membedakan antara perokok dan non perokok dengan akurasi pembacaan >90%.References
Aghaei, S. M., Aasi, A., Farhangdoust, S., & Panchapakesan, B. (2021). Graphene-like BC6N nanosheets are potential candidates for detection of volatile organic compounds (VOCs) in human breath: A DFT study. Applied Surface Science, 536(August 2020), 147756. https://doi.org/10.1016/j.apsusc.2020.147756
Ayouni, I., Maatoug, J., Dhouib, W., Zammit, N., Fredj, S. Ben, Ghammam, R., & Ghannem, H. (2021). Effective public health measures to mitigate the spread of COVID-19: a systematic review. BMC Public Health, 21(1), 1–14. https://doi.org/10.1186/s12889-021-11111-1
Barker, M., Hengst, M., Schmid, J., Buers, H. J., Mittermaier, B., Klemp, D., & Koppmann, R. (2006). Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. European Respiratory Journal, 27(5), 929–936. https://doi.org/10.1183/09031936.06.00085105
Budianto, A., Wardoyo, A. Y. P., Masruroh, M., Dharmawan, H. A., & Nurhuda, M. (2021). Performance test of an aerosol concentration measurement system based on quartz crystal microbalance Performance test of an aerosol concentration measurement system based on quartz crystal microbalance. Journal of Physics: Conference Series, 1811, 1–8. https://doi.org/10.1088/1742-6596/1811/1/012033
Cazzola, M., Segreti, A., Capuano, R., Bergamini, A., Martinelli, E., Calzetta, L., Rogliani, P., Ciaprini, C., Ora, J., Paolesse, R., Di Natale, C., & D’Amico, A. (2015). Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. COPD Research and Practice, 1(1), 1–8. https://doi.org/10.1186/s40749-015-0010-1
Chen, F., Zhang, W., Mfarrej, M. F. B., Saleem, M. H., Khan, K. A., Ma, J., Raposo, A., & Han, H. (2024). Breathing in danger: Understanding the multifaceted impact of air pollution on health impacts. Ecotoxicology and Environmental Safety, 280. https://doi.org/10.1016/j.ecoenv.2024.116532
Dang, Y., Reddy, Y. V. M., & Cheffena, M. (2024). Facile E-nose based on single antenna and graphene oxide for sensing volatile organic compound gases with ultrahigh selectivity and accuracy. Sensors and Actuators B: Chemical, 419. https://doi.org/10.1016/j.snb.2024.136409
Galvan, L. P. C., Bhatti, U. A., Campo, C. C., & Trujillo, R. A. S. (2022). The nexus between CO2 emission, economic growth, Trade Openness: Evidences from middle-income trap countries. Frontiers in Environmental Science, 10(July), 1–16. https://doi.org/10.3389/fenvs.2022.938776
Ge, J. C., Kim, H. Y., Yoon, S. K., & Choi, N. J. (2018). Reducing volatile organic compound emissions from diesel engines using canola oil biodiesel fuel and blends. Fuel, 218(January), 266–274. https://doi.org/10.1016/j.fuel.2018.01.045
Hakim, M., Broza, Y. Y., Barash, O., Peled, N., Phillips, M., Amann, A., & Haick, H. (2012). Volatile organic compounds of lung cancer and possible biochemical pathways. Chemical Reviews, 112(11), 5949–5966. https://doi.org/10.1021/cr300174a
Hu, N., Tan, J., Wang, X., Zhang, X., & Yu, P. (2017). Volatile organic compound emissions from an engine fueled with an ethanol-biodiesel-diesel blend. Journal of the Energy Institute, 90(1), 101–109. https://doi.org/10.1016/j.joei.2015.10.003
Jia, C., Cao, K., Valaulikar, R., Fu, X., & Sorin, A. B. (2019). Variability of total volatile organic compounds (Tvoc) in the indoor air of retail stores. International Journal of Environmental Research and Public Health, 16(23). https://doi.org/10.3390/ijerph16234622
Li, B., Ho, S. S. H., Li, X., Guo, L., Chen, A., Hu, L., Yang, Y., Chen, D., Lin, A., & Fang, X. (2021). A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook. Environment International, 156, 106710. https://doi.org/10.1016/j.envint.2021.106710
Mečiarová, L., Vilčeková, S., Burdová, E. K., & Kiselák, J. (2017). Factors effecting the total volatile organic compound (TVOC) concentrations in slovak households. International Journal of Environmental Research and Public Health, 14(12). https://doi.org/10.3390/ijerph14121443
Miekisch, W., Schubert, J. K., & Noeldge-Schomburg, G. F. E. (2004). Diagnostic potential of breath analysis - Focus on volatile organic compounds. Clinica Chimica Acta, 347(1–2), 25–39. https://doi.org/10.1016/j.cccn.2004.04.023
Strategy, G. A. (2023). Circular economy reinforcement to diminish GHG emissions: A grey DEMATEL approach. Evergreen, 10(01), 389–403.
Widhowati, A. A., Wardoyo, A. Y. P., Dharmawan, H. A., Nurhuda, M., & Budianto, A. (2021). Development of a portable volatile organic compounds concentration measurement system using a CCS811 air quality sensor. IEEE Xplore, 1–5. https://doi.org/10.1109/ISESD53023.2021.9501642
Yakoh, A., Pimpitak, U., Rengpipat, S., Hirankarn, N., Chailapakul, O., & Chaiyo, S. (2021). Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosensors and Bioelectronics, 176(December 2020), 112912. https://doi.org/10.1016/j.bios.2020.112912
Yani, A., Wardoyo, A. Y. P., Anggraeni, D., & Budianto, A. (2024). Development of a Measurement System of Ethanol Gas Based on TGS-2600, TGS-2603, and MQ-138 Sensors. AIP Conference Proceedings, 3132(1). https://doi.org/10.1063/5.0211681
Zhang, K., Cheng, J., Hong, Q., Dong, W., Chen, X., Wu, G., & Zhang, Z. (2022). Identification of changes in the volatile compounds of robusta coffee beans during drying based on HS-SPME/GC-MS and E-nose analyses with the aid of chemometrics. Lwt, 161(January), 113317. https://doi.org/10.1016/j.lwt.2022.113317
Zhao, D. A. N., Crain, N., Azimi, P., Zhao, D., Pouzet, C., Crain, N. E., & Stephens, B. (2016). Emissions of ultrafine particles and volatile organic compounds from commercially available desktop 3D printers with ... Emissions of Ultra fi ne Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with. Environmental Science & Technology, January. https://doi.org/10.1021/acs.est.5b04983