Comparison of Numerical Integration with Trapesium and Romberg Methods Using Hypertext Preprocessor Program

Authors

  • Muhammad Abdul Gani Universitas Mataram
  • Amrullah Universitas Mataram
  • Ulfa Lu'luilmaknun Universitas Mataram
  • Sudi Prayitno Universitas Mataram

DOI:

https://doi.org/10.29303/goescienceed.v5i3.394

Keywords:

Trapezium Method, Romberg Method, PHP, Error, Completion Time

Abstract

The Trapesio and Romberg methods are two classic numerical methods for calculating integrals. The Trapesio method is a numerical integration method that uses an approach based on the area of a trapezoid, but is often less accurate for non-linear functions. In contrast, the Romberg method, which uses Richardson extrapolation, offers higher accuracy even in working on more complex mathematical functions. The purpose of this study is to compare the accuracy and speed of completion in numerical integration on various mathematical functions. The type of research used is pure experimental. Using the Hypertext Preprocessor (PHP) program, both methods are tested for accuracy and speed in solving the given problem. The results show that the Romberg method provides more accurate results than the Trapesium method with an average error of 0.979% in this study, where the result with the lowest error for the Romberg method is in the integral of the polynomial function with an error of 0%. In the case of the Trapesio method, the average error in this study is 9.497%, where the lowest error for the Trapesio method is in the exponential function integral with an error of 0.178%. However, the improvement of accuracy requires a fairly long program completion time on the Romberg method with an average completion time of 4,400 seconds, where the fastest completion time is seconds. Meanwhile, in the Trapezium method, the time required in program execution is very fast with an average of seconds, where the fastest completion time is seconds.

References

Prasetya, A. (2016). Performansi metode Trapesium dan metode Gauss-Legendre dalam penyelesaian integral tertentu berbantuan matlab. Jurnal Mercumatika, 1-12.

https://doi.org/10.26486/mercumatika.v1i1.189

Firdaus, A., Amrullah, A., Wulandari, N. P., & Hikmah, N. (2023). Analisis efisiensi integral numerik metode Simpson 1/3 dan Simpson 3/8 menggunakan program software berbasis Pascal. Jurnal Teknologi Informatika Dan Komputer, 9(2), 1051–1064.

https://doi.org/10.37012/jtik.v9i2.1737

Erviana, B. S., Amrullah, Triutami, T. W., & Subarniah, S.(2023). Efisiensi Penyelesaian Numerik Persamaan Non-Linier dengan menggunakan metode Newton Raphson dan Metode Secant menggunakan program software berbasis Python.Pendas 8(3)1719-1729.

Varberg, D., Purcell, E. J., & Rigdon, S. E. (2007). Kalkulus edisi kesembilan jilid 1. Prentice: Pearson Education.

Subarinah, S. (2022). Metode numerik. Mataram: FKIP Universitas Mataram.

Sujaya, K. A., Prayitno, S., Kurnianti, N., & Sridana, N. (2024). Efektivitas metode Brent dalam menyelesaikan masalah break even point mwnggunakan pemprograman Pascal. Mandalika 6(1), 120-130.

Bismo, S., & Muharam Y. (2010). Metode numerik: komputasi dengan fortran 77 dan turbo pascal. Depok: Universitas Indonesia.

Herfina, N., Amrullah, & Junaidi. (2019). Efektivitas Metode Trapesium dan Simpson dalam penentuan luas menggunakan program Pascal. Mandalika, 1(1)53-63.

Østerby,O.(2005).Romberg Integration Example. Denmark: Aarhus University

Ermawati, Rahayu P., & Zuhairoh F. (2017). Perbandingan solusi numerik integral lipat dua pada fungsi aljabar dengan Metode Romberg dan Simulasi Monte Carlo. MSA, 5(1)46-57.

Siswanto, E. (2021). PHP Uncover. Semarang: Yayasan Prima Agus Teknik Redaksi

Downloads

Published

2024-08-27

How to Cite

Gani, M. A., Amrullah, Lu’luilmaknun, U., & Prayitno, S. . (2024). Comparison of Numerical Integration with Trapesium and Romberg Methods Using Hypertext Preprocessor Program. Jurnal Pendidikan, Sains, Geologi, Dan Geofisika (GeoScienceEd Journal), 5(3), 425–430. https://doi.org/10.29303/goescienceed.v5i3.394

Issue

Section

Articles